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Abstract

While machine learning algorithms have shown impressive results, there have
been a large number of publications highlighting the lack of robustness in these
models. Specifically, various adversarial algorithms have been created to apply
small pixel perturbations to images to fool classifiers. This has begun a cycle of
new adversarial noise generators and new techniques to protect against adversarial
data. Through an experiment with multilayer perceptrons over the MNIST dataset,
we show that we can train a classifier to detect adversarially corrupted samples
generated by three different algorithms with high accuracy. We also argue that
given an adversarial algorithm, we can learn interesting properties of the decision
boundaries of the original classifier.

1 Introduction

Recently, there has been a great deal of research on generating adversarial images to fool machine
learning algorithms, which has highlighted the lack of robustness in neural networks [12, 9, 8, 11]. In
these cases, the classical stationarity assumption of machine learning is violated, causing performance
to deteriorate on later examples [2]. Part of the concern is driven by the knowledge that, unlike random
noise, adversarial noise has been shown to be damaging even at very low magnitudes (undetectable to
the human eye). Our work primarily focuses on identifying images subject to random or adversarial
noise, and evaluating the noise budget at which corruption becomes problematic. Additionally,
we explore the result of repeatedly adding adversarial noise to the original image and using the
adversarial algorithm to provide insight into the decision boundaries of the original classifier.

2 Background

Previous work has shown the robustness of various machine learning algorithms to noisy labeled
examples. In [1], it was shown that PAC-learnable algorithms can be generalized to handle a certain
amount of random noise. However, even in the presence of random noise, a sample size can be chosen
to be sufficient for learning. Previous work has also shown that the noisy version of the perceptron
problem (with random label noise) is PAC-learnable [5]. An analogous analysis has been done for
the robustness of support vector machines to label noise [3]. Our work touches on PAC-learnability,
but focuses on detecting the presence of noise added to the feature space.

While most work in this field has centered on increasing the robustness of classifiers against adversarial
noise, there have also been multiple studies aiming to identify adversarial samples in the testing
dataset. For instance, [7] study the position of samples relative to the decision boundary, and show
that adversarial samples can be detected by using a different measurement of classification uncertainty
based on kernel density estimates and Bayesian distance metrics. Some studies protect against
adversarial attacks by checking for consistency in classification between a data point and a processed
data point; in particular, [10] applies scalar quantization and a spatial smoothing filter to test images,
and uses classification confidences for the original and modified samples to build a detection filter.



Finally, there are several recent studies that are closest to our line of work. Metzen et al. (2017)
generate adversarial images for the CIFAR (and some of ImageNet) datasets, and combine the
original and adversarial images to train a binary “detector" network. They find high classification
accuracy for detecting adversarial images. Furthermore, the work shows high transferability of the
“detector" across different noise generation algorithms. Finally, the authors also describe a possible
counterattack, and a method for defending against the counterattack. Other studies [4] suggest that
modified loss functions are sufficient to bypass these defenses.

3 Types of Adversarial Attacks

We compare three different types of adversarial attacks that are based on the gradient of the neural
network. By adding a small amount of noise to the original image, these attacks are able to trick the
classifier with high confidence.

For the discussion of these algorithms, we consider a set of inputs x and labels y, used to train a
classifier f(x) to minimize a cost J(θ, x, y), where θ denotes the parameters of the classifier.

Box-constrained L-BFGS

In their initial description of adversarial perturbations, Sgezedy et al., posed the problem of construct-
ing an adversarial example from a point x as an optimization problem. As an initial formulation,
the authors aimed to minimize the magnitude of a perturbation r, subject to the constraints that the
modified point x + r remained a valid image, and was misclassified by the network. While this
could be a highly nonconvex problem, the authors approximate the solution with box-constrained
L-BFGS, a general optimization algorithm from the family of quasi-Newton solvers. Following this
work, this method was rarely used in practice, as it depended on an computationally expensive line
search. However, it inspired many new algorithms for generating adversarial examples, which will be
discussed below. In our project, we implemented the following three adversarial attacks.

3.1 Untargeted Fast Gradient Sign

In 2014, Goodfellow et al. developed the fast gradient sign method (FGSM) algorithm. The original
version of this algorithm consisted of one step of a fixed length ε down the gradient of the loss with
respect to the original label.

η = εsign(∇xJ(θ, x, y))

This method inspired many variations; for instance, the one-step descent could be done iteratively
with a smaller step size until the boundary is crossed.

3.2 Targeted Fast Gradient Sign

Another variation on FGSM, targeted Fast Gradient Sign creates a targeted attack, which allows the
adversary to specify the label of the desired misclassification class by replacing the gradient with
respect to the original label by the negative gradient with respect to the target label:

η = −εsign(∇xJ(θ, x, ytarget))

Later variants apply momentum to the update step, such that the step is updated with a decaying sum
of the previous gradients in addition to the current gradient. In fact, the first-place winner of the NIPS
2017 competition for Targeted and Non-Targeted Adversarial Attacks was an FGSM-based algorithm,
which calculated FGSM with momentum across an ensemble of models [6]. These variations show
that even conceptually simple attacks can be effective, transferable, and virtually undetectable.

3.3 DeepFool

Proposed by Frossard et al., DeepFool finds the closest distance to the boundary by iteratively linearly
approximating the classifier. The update becomes

η = −f(x) ∇f(x)
||∇f(x)||22
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This algorithm has been shown to find a smaller perturbation than FGSM, and can be extended to
minimize distance metrics based on different p-norms.

Examples of these three adversarial attacks are shown in Fig. 1. All three attacks are able to
misclassify the original image with high confidence.
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Figure 1: Examples of FGSM, Tar-
geted FGSM (with target = 1), and
DeepFool adversarial noise added to
MNIST digits.

Figure 2: Left: Examples of Gaussian noise added. Right:
Examples of adversarial noise added.

4 Adversarial vs. Random

To understand the properties of adversarial attacks, we compared the impact of test-time adversarial
and random noise on classification accuracy. For our experiment, we trained a multilayer perceptron
(MLP) on the MNIST digit dataset. Then, we added Gaussian noise centered at 0 with a given
standard deviation to the test dataset, and measured the classification accuracy. We repeated this
measurement for standard deviation varying from 0 to 1. Finally, we generated adversarial test images
using one-step FGSM. By varying the step size ε, we could measure the classification accuracy across
different noise budgets. Only a subset of the test dataset was used in this experiment due to the long
runtime. Examples of the Gaussian noise added and adversarial noise added, along with the resulting
”noisy" figures, are shown in Fig 2.

The comparison of classification rates across noise magnitude is shown in Fig 3. From these results,
it is clear that adversarial noise is much more damaging than Gaussian noise at equal noise budgets.
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Figure 3: Classification accuracy of MNIST clas-
sifier for test data corrupted with Gaussian noise
and adversarial noise of varying magnitude.

Figure 4: Classification accuracy of SVM for test
data corrupted with Gaussian noise of varying
magnitude.
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Comparison to SVM

We repeated the above Gaussian noise experiment with an SVM. Only 10% of the testing and training
dataset was used for computational purposes. Fig 4 shows the classification results across varying
noise budgets. The results are similar, though the accuracy of the SVM appears to decay slower with
noise magnitude.

5 Detection of Adversarial Noise

Now that we have seen the increased impact of adversarial noise compared to Gaussian noise, we
would like to see if we can automatically detect it with a binary classifier. Specifically, after training
an MLP on MNIST, we construct a dataset where 50% of the images are corrupted with adversarial
noise and the other 50% are the original images. Then, we train a new binary detection classifier
to differentiate between clean and adversarial images, and measure its classification accuracy on a
similarly constructed test set.

We repeat this experiment for the three adversarial algorithms previously discussed: the Fast Gradient
Sign Method, Targeted Fast Gradient Sign, and DeepFool. As a baseline, we repeat the experiment
with random (Gaussian) noise of mean and standard deviation equal to the mean and standard
deviation of the adversarial noise generated by each of the three algorithms. The results of this
experiment are shown in Table 1.

In Table 1, we can see that, consistent with previous experimental results, Deep Fool adds a smaller
amount of noise than FGSM. As a result, the equivalent amount of Gaussian noise is difficult for
the MLP to detect without going into extensive hyperparameter tuning. For all three algorithms, the
detection rate of the adversarial noise is much higher than the detection rate of the corresponding
Gaussian noise of the same noise budget.

Table 1: Detection accuracy of various adversarial noise attacks and corresponding detection accuracy
of Gaussian noise of the same noise budget.

Adversarial Attack µnoise σ2
noise

Detection Rate
of Adversarial

Detection Rate
of Gaussian

FGSM 0.0102 0.0531 100% 99.9%
Targeted FGSM 0.00416 0.0622 100% 80%
Deep Fool 0.00207 0.00313 99.0% 57.5%

This trend is also reflected in Fig 5 where the detection rate of FGSM adversarial noise is higher than
the detection rate of Gaussian noise for smaller noise budgets.
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Figure 5: Detection accuracy using MLPs is very
effective. For small noise budgets, the detection
accuracy of adversarial noise is higher than that
of Gaussian noise.

Figure 6: Gaussian noise detection accuracy us-
ing SVMs. When σ > 0.15, the detection accu-
racy is very high.
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Comparison to SVM

We repeat the Gaussian noise experiment with SVMs. To train the SVM in a computationally feasible
amount of time, we used 10% of the MNIST training and test sets. The detection rate results for
SVMs in Fig 6 show a very similar trend for detection accuracy as the multilayer perceptron in Fig 5.
Both models show a large increase in detection accuracy when the noise budget exceeds 0.1 standard
deviation. This is interesting because after the noise budget is below a certain threshold, both SVMs
and MLPs have difficulty detecting the presence of Gaussian noise.

6 Iterative Adversarial Attacks

To explore the question if adversarial attacks can provide information on the decision boundary of a
black box classifier, we use a particular adversarial attack algorithm and run multiple iterations of it
on an image.

We run multiple iterations of the untargeted FGSM on the MNIST dataset (formulation in Algorithm
1). After multiple iterations, the resulting image is extremely grainy and indistinguishable to the
human eye. However, the neural network is able to classify these images as the incorrect digit with
extremely high confidence. This experiment shows that the neural network is extremely sensitive to
the adversarial attack and is able to switch its predictions when adversarial noise is repeatedly added.

Overall, we found that iteratively applying Fast Gradient Sign with ε = 0.04 resulted in an image
that looks similar to white noise (Fig 7). A collection of manually tested examples were shown
to be statistically indistinguishable from white noise by the Ljung-Box test, though we did not
repeat this analysis on a large scale. However, we found it interesting that, while the classification
probabilities resulting from this algorithm varied, they would occasionally result in a very high
confidence classification. This suggests the question – can an image of white noise be classified with
high confidence?

Algorithm 1: k-Iterative Adversarial Attack
Data: Clean sample xi with true label yi

for i = 1 to k do
for j = 1 to steps do

xi ← xi + ε ∗ sign∇J(xi,yi)

Check yi 6= f(xi)
yi ← f(xi)

return xi

Algorithm 2: Boundary Walk
Data: Clean sample xi with true label yi

for i = 1 to k do
while yi 6= f(xi) do

xi ← xi + ε ∗ sign∇J(xi,yi)

yi ← f(xi)

return xi
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Figure 7: Examples of iterative untargeted ad-
versarial noise being added to MNIST using Al-
gorithm 1. From Left to Right: Original image,
every 5th iteration of adversarial noise added.

Figure 8: Examples of Algorithm 2 applied to
three example images. Images are shown after
every 200 iterations of the outer loop.

To verify this, we constructed a large dataset (50000 samples) of “images" of uniform noise, ran
the MLP classifier for MNIST, and found the probability associated with the most likely class.
The density histogram in Fig 9 shows these probabilities. The histogram peaks at just over 44%
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confidence. Notably, we find that over 1.5% of random uniform noise is given a classification with
over 97% confidence, and over 6.7% of random uniform noise is given a classification with over 90%
confidence. This experiments suggests a lack of robustness of the network to regions of the feature
space that are not representative of training samples.
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Figure 9: Histogram of highest confidence of classifications of a dataset generated from a random
uniform distribution between 0 and 1.

In addition, we experimented with a different variation of the iterative walk algorithm, in which
the argument of the gradient was switched as soon as the boundary was crossed (formulation
in Algorithm 2). While the previous algorithm took large steps and landed into the interior of
classification regions (therefore resulting in a high classification accuracy), the motivation of this
experiment was to stay close to the boundary, so the step size was set to ε = 0.002. Since this
experiment was largely exploratory, we ran it manually with randomly selected initial images. Fig 8
shows the evolution of example images from this algorithm, every 200 outer iterations. In addition,
after each iteration of the algorithm (just after a boundary was crossed), we classified the output
image with the original classifier. This classification confidence over iterations, colored by class, is
shown in Fig 12 for the three example image paths.

Unsurprisingly, the images in Fig 8 do not diverge as quickly into noise as the previous algorithm,
as the step size is much lower. However, it is interesting to note the behavior of the classification
confidence throughout the outer iterations. In each figure, the confidence falls rapidly over the first
few iterations. Then, all examples in Fig 12 show temporary plateaus, during which the classification
is limited to a select number of classes. For instance, in the top plot, the plateau occurs around
50% confidence, shared between classes 7 and 0; in the middle plot, the plateau occurs around
33% confidence, shared between classes 3, 2, and 0; and in the bottom plot, the image hovers
around 33% (3 classes) before falling to about 25% (4 classes) and then to 20% (5 classes). Within
each plateau, the confidences between the classes seem to converge slightly to each other. When
examining this algorithm over a greater number of iterations (up to 10000), the final images look like
indistinguishable noise (similarly to Algorithm 1) and are classified with very low confidence.

By construction, this algorithm is meant to move along the boundaries of the classifier. We hypoth-
esize that within each plateau, it walks along a high-dimensional boundary shared by a subset of
classification regions, but continues to move further from the parts of the feature space corresponding
to more meaningful input values. Since there is definite structure to the paths followed by example
images, and discrete sections when new class labels occur on the path, this work may be useful
for better understanding the boundary structure of networks, and extracting a lower-dimensional
representation of the decision boundaries.
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Figure 10: Toy example of binary classifier with
linear decision boundary.

Figure 11: Toy example of adversarial noise be-
ing added to one class, pushing the points over
the decision boundary.

7 Sample Complexity of Adversarial Noise

We want to formalize the complexity of detecting adversarial noise in the framework of PAC learning.
The objective in PAC learning is to produce a classifier that, with probability 1−δ, has an error rate of
at most ε. To achieve this, the learning algorithm is supplied with m number of i.i.id training samples
and their correct classifications. Determining the minimum m(ε, δ) of training samples necessary to
achieve the objective would give us the model’s sample complexity.

If we know the sample complexity of a black-box linear classifier to be m, we would like to find a
relationship with respect to m′, the sample complexity of detecting adversarial noise.

Given the adversarial model, we provide intuition on why the sample complexity m′ of learning
adversarial noise is bounded by the sample complexity of the attacked linear classifier m. To add
adversarial noise, the adversarial algorithm must know the hyperplane of the linear classifier (Fig 10).
To attack a sample point, the adversarial algorithm must then move the point across this hyperplane
(Fig 11). Since the adversarial noise only moves the point to the other side of the boundary, the
sample complexity of detecting adversarial noise at most the sample complexity of the linear classifier.
Furthermore, m′ << m because the adversarial algorithm pushes the point to the nearest point on
the boundary to flip the label. This action reduces the space spanned by the sample points.

8 Conclusion

Many papers have proposed various methods of generating adversarial noise that can fool a neural
network classifier. In this paper, we demonstrate that it is much easier to detect an adversarial attack
on an image compared to Gaussian noise. We hypothesize that this is mainly due to the structure
of adversarial noise, which is calculated as a gradient loss. This gives us reason to believe that
adversarial noise may not be so harmful as described in literature. In addition, by examining the
iterative variant of adversarial noise generation, we are able to infer some characteristics about the
decision boundaries near an image. Perhaps by knowing an adversarial algorithm, we could learn a
subset of the decision boundaries of a black-box classifier.

9 Future Work

There are multiple directions for continuing this work. First, we are interested in more formally
analyzing the ability to detect adversarial images in a PAC-learning framework, specifically by con-
sidering the sample complexity of the original classifier as an upper bound of the sample complexity
of the binary detection classifier. This line of work may show that the problem of adversarial noise is
not as harmful as literature would suggest if we are able to easily detect it.

Second, the MNIST dataset may not be the most representative of the statistical properties of
adversarial noise and our generated images, as there is limited variation in image structure. To
evaluate the transferability of our results, we would like to extend the prior experiments to more
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complex datasets such as ImageNet. We expect to see similar experimental results even with more
complex input data.

Furthermore, we would like to use the iterative variants of FGSM to understand the decision bound-
aries of the original classifier especially in the multiclass case. In particular, if we stop the attack as
soon as a decision boundary is crossed, we may be able to extract information about the decision
boundary from the adversarial algorithm.
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Figure 12: Classification confidence of the MNIST multi-layer perceptron over images generated on
each outer iteration of Algorithm 2. The points are colored by the predicted class.
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