1 Introduction

There has been growing interest in cooperative group robotics [8], with potential applications in
construction and assembly. Most of this research focuses on grounded or mobile manipulator robots,
which have a long history of use in industry. However, more recent studies have introduced UAVs
to this setting. For instance, [4] is one of the first studies to develop an autonomous aerial con-
struction system: a team of quadcopters is used to assemble ” cubic structures” composed of beams
and connectors, and the team is evaluated by the time taken to assemble the structures. However,
the authors describe diminishing returns with an increasing number of quadcopters, as they avoid
collisions between them by enforcing a ”serial” assembly line in which the quadcopters wait for an
area to clear before entering. They note that the system needs path-planning algorithms in which
quads could navigate simultaneously through the same area. Another study [1] also used UAVs
for construction, this time planning mutually avoidant trajectories based on bounding boxes, and
replanning if a collision is detected in the near future.

There is a varied number of approaches to path planning. Some are closer to graph-based methods
such as A* or D*, or Rapidly-exploring Random Trees [1]. Others are methods for global optimiza-
tion, including potential fields, Particle Swarm Optimization (PSO) [3], and evolutionary or genetic
algorithms [6].

At its root, path planning is an optimization problem. Most problems in a noisy environment with
complex constraints are highly nonconvex, and it can be difficult to develop theoretical guarantees
of convergence or optimality. However, in some cases, the formulation of the constraints is mostly
convex, and may be modified such that it can be approached with general convex solvers. This
is done by [9], which formulate trajectory planning as a non-convex optimization problem, and
develop an algorithm for solving it optimally.

This works will start with a detailed summary of the Successive Convexification algorithm developed
in [9]. Then, it will outline the problem formulation, derivation, and results for a free-final-time
trajectory planning problem and a problem with object avoidance for connected quadcopters.

2 Successive Convexification Algorithm

In general, non-convexity can arise from the objective function, from state or control constraints,
or from nonlinear dynamics. The first is usually easy to manage by transferring the nonconvexity
from the objective to the constraints through a change of variables. For the second case, some
methods have been developed to convert them to convex constraints while guaranteeing an optimal
solution [2]. Finally, successive convexification (SCVX), developed by Mao, Szmuk, and Acikmese
in [9], is an algorithm for solving optimal control problems with nonconvex constraints or dynamics
by iteratively creating and solving a sequence of convex problems. This algorithm is described
below.

SCVX assumes a nonconvex equality or inequality constraint f(x(t),u(t),t) for 0 < ¢ < T. The
state trajectory = : [0,7] — R"™ is assumed to be initialized to zp at time ¢ = 0; the con-
trol input w : [0,7] — R™ is assumed to be Lebesque integrable over the time domain; and
f: R* x R™ x R — RF is assumed to be Frechet-differentiable with respect to all arguments.
Additionally, x and u are subject to constraints z € X and u € U, where the sets X € R™ and

U € R™ are assumed to be convex and time-invariant. Finally, the cost C(x,u) is assumed to
be convex and Frechet-differentiable. Under these assumptions, the algorithm solves the following
problem:

Non-Convex Optimal Control Problem (NCOCRP): Determine a control function u* and a
state trajectory x* which minimize the functional C(x,u) subject to the constraints:

fx(t),u(t),t) <0 vt € [0,T] (1)

zeX vt € [0,

uelU vt € [0,T] @

Now, the authors use a first-order Taylor approximation of this nonconvex problem to create a
sequence of convex problem, with some additional requirements to guarantee convergence and
optimality. Let the solution of the previous iteration be 2!, u*~!. Define

0

A(t) = o F@(),ult),t) -1y w100
0

B(t) = % (:E(t)au(t)at) |a:i*1(t),u"*1(t),t (3)
0

D(t) = g (@), ut),t) [gi-1(e)ui-1(6)t
Then, the new constraint defined by the first-order Taylor linearization, is

Fla(t),ut),t) = f' 1), ' (1), 8) + A(t) * (2(t) — 2"~ (1)
+B(t) * (u(t) — u' (1) (4)
+ D(t) + (higher order terms)

In conjunction with the other constraints of the problem, this becomes the ¢th iteration, and there-
fore defines a sequence of convex problems. However, there are two possible issues introduced by
this linearization.

One such issue is artificial infeasibility. Namely, this sequence of problems can generate an infea-
sible problem, even if the original nonconvex problem was feasible. The authors mitigate this by
introducing virtual control — a term that acts as an unrestricted, but heavily penalized, control
input, turning constraint (3) into:

Fa(t),u(t),t) = f(a' (1), u" (), 8) + A(t) * ((t) — 2" (t))
+ B(t) * (u(t) —u' (1)) (5)
+D(t)+T1
In effect, virtual control allows any state in the state space to be reached on a subsequent iteration,

which removes infeasibility while still encouraging a solution which only ”uses” the real control
input.

The second issue is approzimation error: the convex problem might be starkly different further
from the point of approximation, potentially even being unbounded. To avoid divergence from the

true problem due to this error, the authors enforce a trust region on the control input, which
simply limits the change in the control vector between iterations:

[ult) —u (Bl < p for0<t<T (6)
Note that the trust region is not a variable; it is fixed for every iteration.

With these constraints, the authors define the sequence of convex problems, where the ith iteration
is given by:

Convex Optimal Control Problem (COCP): Determine a control function u* and a state
trajectory x* which minimizes the functional C(x,u) + XD T) subject to the constraints (2), (4),

(5).

After the solution to the ith problem is found, there is an evaluation step in which the original,
non-convex cost for the solution is computed. A comparison of the convex and non-convex costs
determines whether a certain iteration is accepted or rejected, the convergence of the algorithm,
and the trust region size for the following iteration.

The trust region is updated depending on the accuracy of the approximation. If the approximation
is close to the true (nonconvex) cost, the trust region is expanded; if it is sufficiently different, it
may be reduced in size. Specific parameters are chosen by the user.

An iteration is accepted if the nonconvex cost decreases — in other words, if this trajectory is found
to be a better solution for the original problem than the previous trajectory. Otherwise, the itera-
tion is rejected.

Finally, the algorithm converges when the change predicted by the linearization is (close to) zero.

SCVX is guaranteed to converge, and is the solution after convergence is feasible, it is optimal. A
proof of convergence in continuous time is given in [9].

3 Minimum-time Problem

The (discretized) physical dynamics of a trajectory are given by
2

plil = pli 1]+ ofi = 1 xt + (ali] + g) * 5, @ € [1, N]
where p is the position, v is the velocity, a is the acceleration (or control), g is the gravity vector, N
is the number of points in the trajectory, and t is the time step (equal to the final time 7" divided

by N).

For a fixed final time, and therefore fixed ¢, the dynamics are linear in the variables p, v, and a,
and therefore are a convex constraint. So, the optimization problem defining the minimum-energy
trajectory between defined start (p1,v1) and goal (py,vy) states would be:

Convex Minimum-Energy Trajectory Problem (CMETP)

witiize 2.5

subject to p[l] = p1, v[1] =1
p[N]:pr U[N]:UN
”v[i”bgvmax; VZ:LN
lalill2 < @mae, Vi=1,...N

2

P[i]:P[i—l]—l-v[i—l]*t+(a[i]+g)*§7 Vi=2...N
vli] = vli — 1]+ (a(i) + g) xt, Vi=2,...N
la[i]l]2 < s[i], Vi=1,...N

This is a second-order cone program (SOCP), can can very quickly be solved with interior point
methods. However, the applicability of this formulation is limited, as it depends on a fixed final
time. Furthermore, as shown in Figure 1, the resulting trajectories vary largely with the final time.

To expand the applicability of this formulation, we will consider ¢ as a variable, and will use SCVX
to solve the non-convex, free-final-time problem.

First, compute the partials with respect to each variable.

dpli]

apli—1]
dpli] _,
dvli — 1]
dpli] _ 12 @
dali] 2
dpli] _

PUL — ofi — 1] + (ali] + g) #t

Now, we can construct the problem for the kth iteration of the SCVX algorithm. As before, there
are constraints on the initial and final position, and upper bounds on the norms of the velocity and
acceleration:

pll] = p1, v[l] =0

p[N] =pn, v[N] =vn

[v[illle < vmaz, Yi=1,...N

lali]llz < amaz, Vi=1,...N

(8)

The linearized physical dynamics, with a virtual control term 7, are now:

pli] = p" il + 1% (pli — 1] — pF i — 1)) + "1 s (v]i — 1] — o7 Hi - 1))

T (B8]

9 all a 2 (9)
= 1)+ @)) 0 (1)
+ 7[i]

foralli=2,...N.
A similar derivation and constraint was done for velocity.

In this formulation, we can now solve the sequence of convex problems to convergence. The sequence
of solutions is shown in Figure 2, and the converged solution is shown in Figure 3. Velocity and
control information is shown in Figure 4.

4 Linked Trajectory Problem

An interesting extension of this algorithm is to solve for multiple, interrelated trajectories. More
specificaly, a possible application to the study of UAVs for construction is to find trajectories
of quadcopters that are carrying a rod. Suppose the previous constraints hold: initial and final
positions are fixed, the velocity and acceleration are bounded, and the trajectories are constrained
to satisfy physical dynamics. Then, if the positions of the two trajectories are given by p; and po,
the nonconvexity is in the constraint

lp1 — pall2 = d

for some fixed rod length d.

We can linearize this constraint and solve the problem with SCVX.
The partials are:

9 (p1 — p2)
(Il = pallz —) = 2
p1 [p1 — pall2 (10)
2 = palle —) = 222
Op2 [p1 — pall2
The constraint, with an included virtual control term 7, will be:
- - (=L — pi T - (pi L — T -
1P =y e —d+ oo —)+ S (e 0y Dl =T (1)
Py —py 2 Py —py 2

The overall control problem includes the constraints described in the CMETP applied to two tra-
jectories p; and po, a convex slope constraint, and the constraint above, with a minimum-energy
objective. A solution to this problem is shown in Figure 5.

We can extend this formulation to consider obstacles. For example, suppose the environment con-
tains a cylindrical obstacle centered at a point C' with radius r. We would like to avoid collisions
not only with the two quadcopters, but also with the line segment between them, at each point of
the trajectory. The convex and nonconvex constraint derivations for this problem are described in
Appendix A.

Since the constraint should only be applied for a line segment passing through p; and po, and not
for the full line, we scaled the constraint by a windowing function. While a square window would
have most accurately represented the constraint, it caused convergence difficulties. Instead, we
used the smoother function, equal to 1 between p; and ps, and a Gaussian on either side with a
standard deviation of 0.2.

The solution to this problem is shown from two angles in Figures 6 and 7.

5 Discussion

Using successive convexification, both of the two problems that were described above led to intu-
itive results. The free-time problem converged to a solution in which the norm of the acceleration
is touching its the upper bound, and travels along a straight line in the x-y plane. The linked-
quadcopter problem successfully avoids the obstacle while keeping the distance between trajectories
constant, and the slope relatively even.

On of the advantages of this method is that it is general, in that new (nonconvex) constraints in
the original problem can be linearized and added to the formulation of the convex problem. Addi-
tionally, unlike many other methods, it has theoretical guarantees on convergence and optimality.

There are some potential difficulties that can arise with this algorithm. While it is guaranteed
to converge, and the solution is proven to be optimal if it is feasible, it may also converge to an
infeasible solution. Experimentally, this occurred in the case of the linked quadcopter problem
for some parameter values. Additionally, the number of iterations to convergence also varies with
parameters such as the trust region size, the tolerance, the factors in front of the trust region term,
thresholds for trust region updates, and so on.

6 Conclusion

SCVX provides an approach for efficiently solving path planning problems, and can be used in
real-time applications. It can address fixed- and free- final time problems, as well as problems with
multiple interrelated trajectories. Future work may extend SCVX to a larger set of interrelated
trajectories, or perhaps try applying the algorithm to path planning for manipulators.

A Derivative calculations

Finding the shortest distance from a point to a line:

Let p1, p2 be points in R? that define a line segment, and let C' € R? be the center of an obstacle
of radius 7. The line segment can be parameterized as p; + (p2 — p1)t for t € [0, 1].

For a fixed t, the distance between the point p; = p1 + (p2 — p1)t and C' is

s(t) = ||p1 + (p2 — p1)t = Cl2

To find miny s(t), set the derivative to zero:

d (p1+ (p2 — p1)t — C) ' (p2 — p1)

—s(t) = =0
dt Q [lp1 + (p2 — p1)t — C|2

Multiply by the denominator and simplify:

(p1+ (p2 — 1)t — C) ' (p2 —p1) = (1 — O) (2 — p1) + |Ip2 — P13 = 0
Therefore,
(C —p1)T(p2 — 1)

t=
\|P2—p1\|§

This (scalar) value of ¢ corresponds to the point

(C—p1)T(p2 — p1)

p1+ 5 (p2 — p1)
|lp2 = p1ll3
The distance between this point and C' is
C—p1)'(p2— 1
||p1+(()(p2—p1)—0||2

|lp2 — 113
Therefore, the final (nonconvex) constraint is

(C—p1)T(p2 — Pl)(

p2—p1) —Cll2—7r>0
sz—plﬂg

le +

Note that this is a constraint on the shortest distance from a point to a line, not to a line segment.
Ideally, we would only like to impose this constraint if ¢ € [0, 1].

Finding the linearized constraint:

To simplify notation, introduce the following expressions:
(C —p)" (p2 — p1)
|[p2 — p1l |%
Y(p1,p2) = p1 + (p2 —p1) - 2(p1,p2) — C
Z(p1,p2) = [|Y]]3 — 1

33(]?1’]92) =

With this notation, the original, nonconvex constraint is

Z(p1,p2) >0
Find the partial derivatives:
Az
4z _ oy dY
dpy dp
4z _ .y 4V
dpo dps
dY
dpr (1 — z(p1, p2))I + p2(Vp,z(p1,p2))"
dy
dps = 2(p1,p2)I + (p1 — p2)(Vpz(p1,p2))"

(2p1 — C —p2) . 2(p2 —p1))T(C —p1) - (p2 — p1)

Vp1$(p17p2) =

||p2—p1||3 sz—plﬂé1
(C—p1) 2(p2 — p1)T(C —p1) - (p2 — p1)
\Y T\p1,pP2) = -
PP = T T o 71|l

The linearized constraint, including the virtual control term, will be

dz . dZ
i=1 i1y + (pg — Dy)dim’(pzi—l7pi—l) +72>0

i—1 i—1 i—1
2Py)+ =) g ;

where pl,pg,p’fl, and pé_l are short for pi[k], pa[k], p1[k]* !, and pa[k]*~! at each index k € [1, N]
of points along the trajectory.

References

1]

D. Alejo et al. “Collision-Free 4D Trajectory Planning in Unmanned Aerial Vehicles for As-
sembly and Structure Construction”. In: Journal of Intelligent Robotic Systems 73.1 (2014),
pp. 783-795.

J. Carson B. Acikmese and L. Blackmore. “Lossless convexification of non-convex control
bound and pointing constraints of the soft landing optimal control problem”. In: IEEE Trans-
actions on Control Systems Technology (2013).

Yong Bao, Xiaowei Fu, and Xiaoguang Gao. “Path planning for reconnaissance UAV based on
Particle Swarm Optimization”. In: 2010 Second International Conference on Computational
Intelligence and Natural Computing. Vol. 2. 2010, pp. 28-32. DOI: 10.1109/CINC.2010.5643
794.

Hugh Durrant-Whyte, Nicholas Roy, and Pieter Abbeel. “Construction of Cubic Structures
with Quadrotor Teams”. In: Robotics: Science and Systems VII. MIT Press, 2012, pp. 177-184.

M. McEvoy, E. Komendera, and N. Correll. “Assembly path planning for stable robotic con-
struction”. In: 201/ IEEE International Conference on Technologies for Practical Robot Ap-
plications (TePRA). 2014, pp. 1-6. DOI: 10.1109/TePRA.2014.6869152.

Y. Volkan Pehlivanoglu. “A new vibrational genetic algorithm enhanced with a Voronoi di-
agram for path planning of autonomous UAV”. In: Aerospace Science and Technology 16.1
(2012), pp. 47 =55.

Vincent Roberge, Mohammed Tarbouchi, and Gilles Labonté. “Comparison of parallel ge-
netic algorithm and particle swarm optimization for real-time UAV path planning”. In: IEEE
Transactions on Industrial Informatics 9.1 (2013), pp. 132-141.

Justin K Werfel, Kirsten Petersen, and Radhika Nagpal. “Distributed multi-robot algorithms
for the TERMES 3D collective construction system”. In: Institute of Electrical and Electronics
Engineers. 2011.

Behcet Acikmese Yuanqi Mao Michael Szmuk. “Successive Convexification of Non-Convex

Optimal Control Problems and Its Convergence Properties”. In: IEEE Conference on Decision
and Control (2016).

y axis

Figure 1: Trajectories for three possible values of fixed final times.

z axis

Figure 2: Trajectories across the iterations for the free-final-time problem. The top curve is the
initial guess.

z axis

Figure 3: The solution for the free final time problem.

Norms of Velocity Norms of Acceleration

11

KoK K K K K Kk
HH—HH—K

(vl

N WA OO N O O

[lul
o]
‘

0 5 10 15 0 5 10 15 20
index index

Figure 4: Plots of the norms of the velocity and acceleration for the free final time problem. The
red lines indicate the upper bounds.

10

Figure 5: Plot of solution to the connected quadcopter problem. The red and blue lines indicate
the individual trajectories, and the black lines indicate the rod at each time point.

y axis
(4]
T

Figure 6: Plot of object avoidance for two connected quadcopters in the x-y dimension. The red
and blue lines indicate the individual trajectories, and green circle represents the x-y projection of
the cylindrical obstacle, and the black lines indicate the rod at each time point.

11

y axis

X axis

Figure 7: Plot of object avoidance for two connected quadcopters. The red and blue lines indicate
the individual trajectories, the cylindrical obstacle is in green, and the black lines indicate the rod
at each time point.

12

