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Introduction
In 2013, Szegedy et al. discovered that neural networks could be effecƟvely tar-

geted with adversarial noise: very small perturbaƟons to inputs that results in high-

confidencemisclassificaƟon. Since then, adversarial examples have beenwidely stud-

ied, with many suggested aƩacks and counteraƩacks. For this project, we:

� Compare the properƟes of adversarial and random noise.

� Show that we can detect adversarial samples with high accuracy.

� Present some extensions of the fast gradient sign algorithm to construct images

that appear to bewhite noise, but which aremisclassifiedwith high confidence.

What is Adversarial Noise?
Adversarial noise is a small perturbaƟon of

clean data which can fool a classifier into

predicƟng an incorrect label. There are

numerous methods to generate these per-

turbaƟons, and we implement three such

methods: Fast Gradient Sign, Targeted Fast

Gradient Sign, and DeepFool. The figure

at right shows examples of original images

along with generated adversarial images

(misclassified with high confidence).

Original FGSM Targeted FGSM DeepFool

Consider a classifier f , and let θ be the parameters of the classifier, x be the input, y
be the targets associated with x , and J be the loss used to train the classifier. The

three algorithms are detailed below:

Fast Gradient Sign (FGS): This algorithm, developed by Goodfellow et al. in 2014,

relies on moving down the gradient of the loss with respect to the class label unƟl a

classificaƟon boundary is crossed. Each step is updated as:

η = εsign(∇x J(θ, x , y))

Targeted FGS: This variant of FGS iteraƟvely moves up the gradient of the loss J with

respect to the target label ytarget corresponding with the desired misclassificaƟon

class:

η = −εsign(∇x J(θ, x , ytarget))

Deep Fool: DeepFool improves upon Goodfellow’s algorithm, and constructs adver-

sarial examples with less visible noise. The method consists of iteraƟvely descending

down the gradient of the classifier, scaled by the classificaƟon confidence:

η = −f (x) ∇f (x)
||∇f (x)||22

How Effective is an Adversarial Attack?
The main property which makes adversarial noise malicious is that the perturbaƟon

can be very small in magnitude, and seem impercepƟble to a human eye. To see how

it compares to random (Gaussian) noise of the same magnitude, we:

� Trained a mulƟlayer perceptron (MLP) on the MNIST dataset.

� Implemented one-step FGSM with the given step size to construct a small ad-

versarial test dataset for a given noise budget.

� Calculated the test accuracy of the MLP.

� Repeated this experiment with Gaussian noise of equivalent magnitude.
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The leŌ figure shows examples of images and noise; the right figure shows classi-

ficaƟon accuracy across noise budgets. Even simple adversarial algorithms result in

much highermisclassificaƟon rates at amuch lowermagnitude than random noise.

Can Adversarial Attacks be Detected?
If a classifier is subjected to an adversarial aƩack, one possible defense may be to

design a (binary) classifier to detect adversarial samples. For this approach, we:

� Trained a mulƟlayer perceptron (MLP) on the MNIST dataset.

� Generated images corrupted by adversarial noise from three different algo-

rithms against this classifier.

� Trained amulƟlayer perceptron (MLP) to disƟnguish between clean original im-

ages, and noisy adversarial images.

� Measured its detecƟon accuracy, and compared this to the accuracy of detect-

ing images corrupted by Gaussian noise of the same noise budget.

Adversarial AƩack µnoise σ2
noise

DetecƟon Rate

of Adversarial

DetecƟon Rate

of Gaussian

FGS 0.0102 0.0531 100% 99.9%

Targeted FGS 0.00416 0.0622 100% 80%

Deep Fool 0.00207 0.00313 99.0% 57.5%

By design, the three methods of generaƟng adversarial aƩacks only add a small mag-

nitude of noise relaƟve to the original image. Yet surprisingly, these corrupted images

can be detected by an MLP with high confidence, unlike images with Gaussian noise

of the same magnitude.

Algorithmic Extensions
If adversarial noise can be detected, can it be reversed? In parƟcular, what kind of

image will be produced by repeated applicaƟons of the Fast Gradient Sign Method?

Algorithm 1: k-IteraƟve AƩack
1: for i = 1 to k do

2: for j = 1 to steps do

3: xi ← xi + ε · FGSM(xi , yi)
4: end for

5: Check yi 6= f (xi)
6: yi ← f (xi)
7: end for

To explore these quesƟons, we use the

algorithm described on the leŌ. We re-

peatedly calculate adversarial steps, and

update the reference image aŌer a fixed

number of iteraƟons. We used ε = 0.04,
steps = 5, and k = 500.

The figure below shows the resulƟng images, class predicƟons, and confidence values

for an example original image and subsequent images every 10 iteraƟons.
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While our iniƟal moƟvaƟon was to aƩempt to reverse an adversarial aƩack, the

algorithm does not return to the original image. Instead, it moves through different

classes with high confidence, while the image becomes increasingly indisƟnguishable.

For a collecƟon of original images, we ran the algorithm for k = 500 iteraƟons and

tested the staƟsƟcal properƟes of the resulƟng image. By the Ljung-Box test, the out-

put was not staƟsƟcally disƟnguishable fromwhite noise. We conclude that this algo-

rithm results in a method for generaƟng white-noise-like images that are misclassi-

fied with high probability.

Future Work
In conƟnuaƟon of this project, we would like to:

� Formalize the ability to detect adversarial images in a PAC-learning frame-

work, by comparing the sample complexity of the binary detecƟon problem

to the sample complexity of the original classifier.

� Use the k-iteraƟve variant of FGS to understand decision boundaries around a

given image. In parƟcular, the algorithm seems to exhibit cyclic behavior if we

switch the direcƟon of the gradient as soon as the boundary is crossed.

� The staƟsƟcal similarity to white noise may be difficult to evaluate on MNIST

data, which has limited variaƟon in image structure. For future work, we would

like to extend experiments to more complex datasets such as ImageNet.


